The affine group I. Bruhat decomposition

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Generalized Bruhat Decomposition

The deterministic recursive pivot-free algorithms for the computation of generalized Bruhat decomposition of the matrix in the field and for the computation of the inverse matrix are presented. This method has the same complexity as algorithm of matrix multiplication and it is suitable for the parallel computer systems.

متن کامل

Generalized Bruhat Decomposition in Commutative Domains

Deterministic recursive algorithms for the computation of generalized Bruhat decomposition of the matrix in commutative domain are presented. This method has the same complexity as the algorithm of matrix multiplication.

متن کامل

Flag Varieties and the Bruhat Decomposition MATH 7895 Lecture

For our first example, consider V = Cn. Let {e1, . . . en} be the standard basis of Cn, and fix the full flag F• = 0 ⊂ 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en−1〉 ⊂ V Note that any other flag can be obtained from this one by acting with an element of GLn(C). Specifically, any flag V• = 0 ⊂ V1 ⊂ · · · ⊂ Vn = V in Cn has the form V• = 0 ⊂ 〈ge1〉 ⊂ 〈ge1, ge2〉 ⊂ · · · ⊂ 〈ge1, . . . , gen〉 = V for s...

متن کامل

The Bruhat Order on the Involutions of the Symmetric Group

In this paper we study the partially ordered set of the involutions of the symmetric group Sn with the order induced by the Bruhat order of Sn . We prove that this is a graded poset, with rank function given by the average of the number of inversions and the number of excedances, and that it is lexicographically shellable, hence Cohen-Macaulay, and Eulerian.

متن کامل

Shorter stabilizer circuits via Bruhat decomposition and quantum circuit transformations

In this paper we improve the layered implementation of arbitrary stabilizer circuits introduced by Aaronson and Gottesman in Phys. Rev. A 70(052328), 2004: to implement a general stabilizer circuit, we reduce their 11-stage computation -HC-P-C-P-C-H-P-C-P-Cover the gate set consisting of Hadamard, Controlled-NOT, and Phase gates, into a 7-stage computation of the form -C-CZ-P-H-P-CZ-C-. We show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1972

ISSN: 0021-8693

DOI: 10.1016/0021-8693(72)90071-3